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Instability and secondary motion in 
a rotating channel flow 

By JOHN E. HART? 

Department of Meteorology, M.I.T. 

(Received 22 July 1969 and in revised form 9 June 1970) 

An experiment with the pressure-driven flow down a long rotating channel is 
described. For zero rotation the flow is quasi-parabolic, laminar, and one- 
dimensional up the channel. With slight rotation Q there is a weak double- 
vortex secondary circulation aligned with the channel. At intermediate Q there 
exists an instability in the form of longitudinal rolls of non-dimensional wave- 
number 5. The instability disappears a t  high rotation rates. 

The general stability problem for a rotating zonal flow c(y) is considered 
theoretically. For perturbations independent of the co-ordinate in the direction of 
the flow, the problem is exactly analogous to the stability problem of a tempera- 
ture-stratified fluid where the stratification q ( z )  corresponds to the quantity 

( a q a y )  ( l / Z Q ) -  1. 

This analogy extends to much more general mean fields (e.g. non-linear or time 
dependent) than does the oft-quoted analogy between thermal convection and 
cylindrical Couette flow. The instability theory is in qualitative agreement with 
the experiment. 

1. Description of the experiment 
Experiments with rotating fluids have usually been performed with cylindrical 

containers. The rotating annulus and the cylindrical Couette flow experiments 
are well known examples. These include, among many other things, experiments 
with source-sink flows (e.g. Hide 1968). However, most of these experiments are 
concerned with high rotation rates. It is the purpose of this paper to describe the 
flow r6gimes which occur as a rectangular channel flow is subjected to rotation. 

The basic experimental device shown in figure 1 was a rectangular water 
tunnel, constructed out of plexiglass, with dimensions 90 em long by 8 em high 
by 1-15 em deep. The channel was closed except for two chimneys, one at each 
end. Circulation was driven by establishing a constant pressure head across the 
two chimneys, the head being maintained by a small submersible pump. The 
flow was ba€0ed a t  each end with 3 em wide pieces of porous polyurethane foam 
(shaded regions in the figure) in the entrance and exit sections. The whole 
apparatus with a small reservoir containing the pump was placed on a rotating 
table. Different height taps on the chimneys provided a means for regulating 

t Present address: D.A.M.T.P., Cambridge University. 
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the pressure head. Visualization was achieved by setting a group of fine horizontal 
and vertical wires in the tank and electrically stimulating a pH transition in a 
titrated solution of thymol blue indicator, a method which has been discussed 
in detail by Baker (1966). 

The simple tunnel performed very well over a wide range of SZ (0 to 6 radian/sec) 
and an intermediate range of velocities (mean stream speed 0.5 to 2 cmlsec). For 
these experimental conditions the flow did not exhibit any instability due to end 
effects. For a central section of the tank about 20 cm from the entrance to 5 cm 
from the exit baffle, the flow was completely steady and parallel except for the 
motions discussed in the following sections. If the flow was driven much faster 
than 2 cm/sec eddies from the corner regions penetrated upstream. 

n 
t "  

FIGURE 1. Schematic of the channel. Fluid flow is from left to right. The dye wire observa- 
tion stations A, B, and C are nt 0.25L, 0 5 L  and 075L respectively. 

2. Experimental observations 
We wish to discuss the results in terms of a velocity scale U ,  which is determined 

experimentally as the peak stream speed a t  dye station C. The length scale is 
taken as the channel width D. The flow is pressure driven so that the stream 
speed U is related to the pressure head Ap. The exact relationship will depend 
on the dynamics of the flow in the channel and in the corners, and on the drag 
in the baffles. Thus, it  is more convenient to take the measured speed U as 
defining the system. Asymptotically far from the ends the flows will be independent 
of x (there are no observed transverse waves), so we can write a non-dimensional 
pressure p = - Cx+ P(y,  x )  where Pdi, = (po Uv/D)p .  C is the constant which 
relates the stream speed to the pressure head. 
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With the above assumptions the non-dimensional equations of steady motion 
in co-ordinates rotating with the channel are 

R&U, + WUJ - (11-q v = c + [u, + ZC,,], 

R,[vv, + WV,] + (1/E) u = - P, + [ v ~ ,  + vZz], 

Re[vw, + ww,l = - p, + [WfIU + w,,l, 

0, + w, = 0, 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(4 
FIGURE 3. (a)  shows the direction of the seco 

x 103 

lary circulation looking upstream : 

/ 

/ 

(a) contains the theoretical streamlines. 

where the parameters are 
Re= UDlV, 

E = v/fD2. 

Here, v is the kinematic viscosity and f = 2 0 .  An additional parameter of 
interest is the Rossby number R, = Re. E. 

The experiments were performed by establishing a steady flow at f = 0 and 
then slowly increasing the rotation. The following discussion concerns only the 
aforementioned central section. 

For zero rotation the velocity has only a w component and is a function of y 
and z alone. Looking down on a horizontally injected dye line (from the same 
angle as the sketch in figure 1) we see from figure 2 (a)  (plate 1) that the flow is 
quasi-parabolic in y. In  figure 2 ( b )  we look in along the axis of the wire and see 
that the horizontal dye lines remain flat, evidence of the absence of vertical 
velocity for f = 0. The rotation was increased in a clockwise sense from zero. 
Immediately evident a t  even slight rotations was a weak secondary double 
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roll circulation. The vertical velocities are seen to lift dye lines out of horizontal 
planes (figure 2 (c) and (d)). The two horizontalwires have been alternately pulsed, 
with equal time intervals. Their vertical positions are - 0-12H and 0.23H from 
the centreline z = 0, so that the upper probe is closer to a boundary. The sense of 
the secondary circulation is shown in figure 3 (a) .  Figure 3 ( b )  contains a stream- 
line pattern calculated in $ 3 .  The increased secondary motion at the probe 
position closer to the boundary is reproduced in the theoretical solution which 
concentrates vorticity near the top and bottom walls. 

The secondary motion is due to the vertical Coriolis torque u,. This torque will 
generate 8-vorticity which accounts for the lifting of the dye lines observed 
in the photographs. Bcnton (1956) discussed this type of Coriolis-drivensecondary 
motion in terms of the flow in a rotating pipe, where the rotation was to be that 
of the earth itself. Because the Rossby number for the earth’s rotation and 
laboratory scales is so large, he was unable to observe this secondary motion 
directly. 

In figure 4 we have made tracings from the photographs of vertical dye columns 
induced at dye wire C, figure 1. The straight line is the vertical wire, and each 
curved line to the right indicates the leading edge of a dye pulse. Figure 5 (plate 2 )  
shows some photographs of the vertical streaks. In  figure 4(a )  we show the 
zero rotation profile. Figure 4 ( b )  indicates there is a slight straightening of the 
interior part of the profile with the z variations moving nearer the boundaries. In  
4 ( e )  we see that the characteristic Taylor-Proudman interior flow has developed 
in which au/& = 0. It is the development of the secondary motion with s2 that 
leads to this rdgime. At very large rotation (small E, R,) the secondary motion 
can be thought of as deriving from Ekman suction. Indeed the overshoot in 
figure 4(e) is roughly at  the distance .&Jim = 2E4D from the wall, which is the 
position of overshoot obtained from the theory of the linear Ekman layer. The 
strong rotation pipe flow has been studied by Benton & Boyer (1 966).  Their 
theoretical analysis does not strictly apply to the square channel and the 
boundary-layer methods described in Greenspan ( 1  968) might be more useful 
in our geometry. 

Although the secondary circulation is the first consequence of rotation, at  
intermediate values of R, and E there is a second transition to a higher wave- 
number rdgime. The vertical dye lines in figures 4(c) and 4 ( d )  indicate the 
appearance of a multiple x-independent roll structure of non-dimensional wave- 
number - 5. The onset is observed to take place when the mean flow is only 
slightly modified by the secondary motion (see figures 6 and 7). The rolls were 
detected by observing waviness in the vertical dye lines, waviness resulting 
from modification to the mean flow by the perturbations. We plot the observed 
states as a function of R, and in figure 7. 

On the basis of the stability analysis of $3 4 and 5 ,  it is thought that these higher 
wave-number motions are a true instability of the shear flow u ( g ,  z ) .  Basically 
the instabilities are quite similar to the well-known Taylor vortices, although 
the formulation perhaps has more in common with the meteorologists) long- 
standing concepts of dynamic stability (Solberg 1936). These all possess a 
‘ circulation squared ’ type of necessary condition) which in the present case is 
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shown to be R,. cg - 1 > 0. The solid curve of figure 7 is from the analysis. The 
instability theory predicts the states of the experiments rather well, especially 
the cut-offs at low R, and low E-2. The Coriolis force must be strong relative to 
viscosity, but not so strong as to completely dominate inertial effects. 

As the rotation rate is further increased, the higher wave-number regime is 
stabilized and the fluid passes into the Taylor-Proudman type regime with 
aa /az  equal to zero in the interior (figure 4(e)). This transition involves the 
violation of the above necessary condition for instability, along with the effects 
of the continuous modification of the base flow. 

V'UI 
I I , 

10 loz 103 

In summary, as the channel flow is subjected to increasing rotation the motions 
pass through a succession of r6gimes: stable parabolic, to parabolic modified 
by secondary motion, to axisymmetric rolls, to stable Taylor-Proudman. The 
following sections look at Some of these r6gimes theoretically. 

3. Theoretical discussion of the secondary circulation 
Benton (1 956) has discussed the secondary circulation in a weakly rotating 

pipe flow. He basically considers a perturbation expansion valid as SZ goes to 
zero. We expect that a similar approach should be valuable in our rectangular 
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channel. In  a sufficiently long channel the secondary motions should be inde- 
pendent of x. Equations (2.1)-(2.4) can then be written as a u momentum and 
as a streamwise vorticity equation, 

and 

where 

and 

105 
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R 

10 
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FIGURE 7. The points and error bars represent the observed experimental states. 'U'  
denotes an unstable state, and 'S '  a stable one. The numbers are the vertical wave- 
nunibers. The solid line is a theoretical curve from the theory for the neutral stability 
of the profile g(y) = 1 - 4y2, subject to viscous and Coriolis forces. 

We expand m 

u = C (1/E7L)Un, 
It= 0 

and $ = (1/E*) $n. 
n= 0 

Equating like powers of E in (3.1) to (3.4) we obtain for n = 0 

~ e w o z U o Y  - $oz Uozl = c + uoy* + "ozz3 

R e ~ ~ 0 z W o l I  - y+0$J2~ozJ = v4+0. 

(3.3) 

(3.4) 
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Subject to the boundary conditions the solutions are 

4 ( - 1)p cosh (2p + 1) mz. cos (2p + 1) ny 
and u o = C  -1. (3.8) [i ~ r ~ ~ = 0 ( 2 p + 1 ) ~  cosh(2p+l)nH/D 

Withn = 1:  
R,C11.lZuo, - ll.llIuOzl = %yg + zc,l (3.9) 

V4$h, = uoz. (3.10) 

From (3.10) the mechanism for the secondary circulation is clear. It is driven by 
the differential Coriolis force uoz which exists for arbitrarily small rotation as 
long as uoE 4 0. If there are rigid stationary horizontal boundaries this must be 
true somewhere in the flow. 

Once we solve (3.10) we can go back to find ul. The solution for llrl is found by 
setting z‘ = zh, where % = D / H ,  and writing 

N Q  

i= l  j=1 
$1 = C C AijCAY) dj(z’), (3.11) 

where Ci and Sj are the orthonormal functions of Harris & Reid (1958)) which 
satisfy all the boundary conditions on (see also Chandrasekhar 1961 b). The 
coefficients are found by requiring the error in (3.10) to be orthogonal to all the 
trial functions of (3.11). This leads to a set of linear equations which can be solved 
by matrix methods. We have solved this problem for h = 0.143, with N = 5 and 
Q = 16. The streamlines are shown in figure 3 (b). This solution may be expected 
to be accurate only for sufficiently large E.  If we require the correction to uo 
to be small we find that we must have Re, D/EH 10%. Benton obtained exactly 
the same criterion for the rotating pipe. Even for equality in the above expression 
the n = 1 solutions are quite small. Indeed the secondary flows are very weak 
and for low Reynolds numbers rotation must be very large before the basic 
profile changes very much, at  least in the interior. In  our experiments where 
R,D/H N O(lO), E should be greater than 10-2 for uo to be essentially unchanged 
by the n = 1 solution. 

Since we were unable to look directly up the channel (because of the baffles), 
comparison with the theory was only possible by measuring the ratio of the maxi- 
mum secondary vertical velocity to the peak upstream velocity from the side 
view dye streaks as in figure 2 (plate 1). This yields a comparison to the theory 
at  the dye wire height zo. The results are shown in figure 6. The agreement between 
theory and the limited experimental data is quite good, for E 2 lop2. 

4. Roll instabilities in a rotating shear flow 
Basic equations 

We now consider the stability of a flow between two vertical walls at  y = 

equations of motion can be rewritten slightly as 
Q. The 

R 0 p v l a t + v . v v 1 + L v  = - V ~ + E E V ~ V  (4.1) 

and v.v = 0. (4.2) 
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We further wish to study a mean flow similar to that in the experiment. The 
experimental flow (see (3.8)) varies with z and is modified by the secondary 
motion. However, from the experimental results, and from the theory of $3,  
there is good reason to suppose that a simpler expression for the mean stream 
velocity distribution will give useful theoretical stability results which should 
be applicable to the experimental data. We note that if DIH < 1 the z variations 
in the mean profile o ( y ,  x )  will be concentrated near the horizontal boundaries. 
Further, both the theory of 0 3, and that of Benton suggest that the secondary 
flow will give a small correction ( < 10 %) to if R,D/E2H < lo3. The measure- 
ments confirm this theoretical estimate. An independent estimate of corrections 
to 0 can be made by noting that in the high rotation rkgime Ea sidewall layers 
will probably be important. We suppose that this regime will tend to a viscous 
rkgime as the E2 layers fill the gap. On this basis we expect that viscosity will 
dominate over rotation throughout most of the channel provided E-2 < 102 to 
lo3. This is roughly the same as our previous estimate with R, N 1, DIH N 0.1. 
So for DIH < 1 and R,D/EzH < lo3 we assume we can approximate the flow 
in the region away from the horizontal boundaries by 

- u = 1 - 4y2. (4.3) 

This is one of a class of exact solutions to the full equations (4.1) and (4.2) in 
which V = (U(y), 0,O). These solutions must satisfy 

O(y) = -Fu, 
guy = E-I.PE, 

which are solved by U = (px y2/2E) + by + c, 

P = Px . x - (Px . y3/6E) - gby2 - C Y ,  

(4.4) 

(4.5) 

(4.6) 

(4.7) 

where p,, b, and c are constants. The study of the stability of solutions with the 
form of (4.6) is of theoretical interest since these solutions do satisfy the full 
non-linear governing equations, and as we have noted, the stability of the 
particular solution (4.3) should be relevant to the experiment provided the 
parameters are in the range described above. In the usual manner we expand 
the dependent variables in terms of small perturbations on the mean fields (4.6) 
and (4.7). We find 

R,(u,+ Bu,+vO~)-V = -pX+EV2u, ( 4 . 8 ~ )  

(4.8b) 

( 4 . 8 ~ )  

R,(v, + UV,) + u = -pu + E V V ,  

R,(w, + UwX) = -p ,  + EV'W, 

u,+v,+w, = 0. (4.9) 

In  view of the experiment we consider here perturbations with alax = 0. Thus 
with v = II., and w = - $v we obtain 

( E V Z - R ~ ~ ~ ~ ) V ~ $  =us (4.10) 

and (EV2-R,a/at)u =(R,gu- 1)?,hz. (4.11) 
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If we separate the time and x dependence of the perturbations by introducing 

$ = Re {ieut eikz h(y)} (4.12~) 

u. = Re {ed eikz g( y )> (4.12 b)  

[&!(a2- k2)  - R,g] (d2- k2) h- kg = 0, (4.13) 

[E(d2-  k2) - R,a] g +  (R, TIv - 1) kh = 0, (4.14) 

where d = d/dy. The instability described here takes the form of periodic dis- 
turbances with axes parallel to the mean velocity and with vertical wavelengths 
27r/k. Solutions to (4.13) and (4.14) will be sought which satisfy rigid boundary 
conditions h = d h  = g = 0 at y = ~t: 8. 

and 
we obtain : 

Analogwe to thermal instability 
We shall now show that the linearized longitudinal instabilities of the rotating 
channel flow are dynamically equivalent to similar instabilities in a fluid con- 
tained between two horizontal differentially heated plates. Actually we shall 
demonstrate the analogy only for marginal stability, assuming a = 0. The corre- 
spondence continues to hold for the general case with non-zero growth rates 
provided the Prandtl number of the thermally driven fluid is equal to one. Note 
thatequations(4.13)and(4.14) witha = Oareexactlyanalogous to thoseobtained 
for the thermal problem by Pellew & Southwell (1940). Define a correspondence 

kh/E t-) W ,  (4.15~) 

9 -  8, (4.15 b)  

Ep2 c-f R,, (4.15~) 

y-2, (4.15d) 

RoUv-lct -T,. (4.15 e) 

Using this, (4.13) and (4.14) are transformed into 

and 

(d2-k2)2 w = 8 

(d2- k2) 8 - R, k 2 q  W = 0, 

(4.16) 

(4.17) 

which are just the thermal instability equations mentioned above. Equation 
(4.16) like (4.13) gives the vorticity balance. Since the rotating flow and the 
stratified fluid instabilities are governed by the same equations and boundary 
conditions, results from the thermal problem can be applied here. For example, 
the necessary criterion for instability that the thermal gradient be negative 
somewhere in the interval between the boundaries is equivalent to requiring 
that RODv > 1 somewhere. The total vorticity must be negative in order that 
perturbations be regenerated by the coupling between the vorticity field and 
the Coriolis body force. This is identical to an inviscid condition long recognized 
by meterorologists (e.g. Solberg 1936, pp. 66-82) in the context of the ‘inertial’ 
stability of the jet streams. By use of (4.16) we can interchange eigenvalues and 
eigenfunctions for particular problems satisfying (4.15e). The most familiar 
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cases are where is linear in z (conduction solution) or where T is parabolic 
(conduction with internal heat generation). 

Debler (1966) has pointed out the analogy between the thermal problem (4.16) 
and (4.17) and the instability problem for cylindrical Couette flow. For certain 
T&) the analogy is valid since the cylinder flow equations are, from Debler, 

(d2- k 2 ) 2  w = (1  +a' y) 8, (4.18) 

(d2-k2)0 = -hW,  (4.19) 

here h is the eigenvalue, a' is the mean shear, and y is the independent (radial) 
variable. Chandrasekhar (1961a) has shown that the eigenvalues of the two 
systems (4.16)-(4.17) and (4.18)-(4.19) are identical, but it is clear tha t  the 
eignenfunctions will not generally be the same since the mean field occurs in 
the vorticity equation in the cylinder problem and in the thermal equation in 
the stratified problem. However, the present analogy is exact.t 

5. Solutions to the stability equations 
The linear profile 

We return to equations (4.13) and (4.14) and study solutions with r~ = 0. We 
set ou = 1 (plane Couette flow), and write H = (R, - 1)/E2. The governing equa- 
tion is easily seen to be (d2  - (d2 - k2)  h + Hk2h = 0. Using the analogy to the 
thermal problem we have Hcritical = 1708. This solution reaffirms the necessary 
condition R, au > 1. 

Xolution for the purabolic profile 

We now consider = 1 - 4y2. As already mentioned this is an approximation 
to the actual laboratory profile of $2. It has no z dependence and hence does not 
allow a secondary circulation, but it should model the actual profile near z = 0. 
We have solved the stability equations numerically using the Galerkin method. 
This technique has been discussed in detail by Mikhlin (1964, pp. 448-91) and 
has been used in many hydrodynamic stability problems. The theoretical results 
are contained in the solid curve of figure 7. For decreasing R, the critical para- 
meter E-2 increases rapidly. From the necessary condition we expect that the 
curve should asymptotically approach R, = t. Numerically we have found that 
for R, = = 10'. In  terms of the 
thermal analogue this is because we have a series of distributions in temperature 
with a stable layer over an unstable one where the depth of the unstable layer 
decreases with decreasing R,. For R, < $ the stratification is completely stable. 
It is noted that in some cases the experimentally stable states lie in the unstable 
region. This is probably attributable to the rather insensitive method of observing 

t The exact correspondence is further evidence of the well-known analogy between 
two-dimensional rotating and stratified fluids. The mechanism for the rotating channel 
instability is similar to that for Taylor vortices in that the inviscid condition R,. n, > 1 
can be shown to be equivalent to the condition of Rayleigh that the square of the circula- 
tion decrease outward (for this purpose the channel must be placed a t  an infinite radius). 
However, there is no limiting process which transforms the general cylindrical Couette flow 
instability problem into the thermal instability problem. 

there are a t  least no eigenvalues below 
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the onset of the small amplitude instabilities. Also for the part of the curve with 
> lo4 the simple mean field of (4.3) is probably not entirely accurate with 

regard to the experiment. However, the generally favourable comparison with 
the laboratory data suggests that the observed wavy structure in the vertical 
dye lines is indeed amenable to interpretation as due to a Coriolis-driven 
instability of the horizontal shear flow. 

6. Summary and conclusions 
A simple experiment with a rotating channel flow has been described. The 

motions induced by rotation are (i) a weak secondary double roll flow which 
depends on non-zero zc, for its existence, and (ii) a roll instability depending on 
non-zero ug. Further quantitative studies should perhaps concentrate on one 
or the other of these flows, which means using either a square, or a tall narrow 
channel. 

It has been shown that longitudinal roll instabilities of a rotating zonal flow 
are identical to two-dimensional roll instabilities in a thermally stratified fluid 
provided Fs(z) has the functional form 1 - R, . ug(y). Conclusions reached from the 
study of the rotating system carry over to the stratified fluid problem, and vice 
versa. 

I would like to thank Prof. R. Beardsley of M.I.T. for generously offering the 
use of his rotating table for the experiments. 
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FIGURE 4. Tracings of the development of dye 
lines induced from the vertical wire at station 
C. As f increases thcro is a general sharpening of 
tho profile. For interrncdiate f, a higher mode is 
evident. ( a )  R = 0; ( b )  R, = 6.5, E-2 = 936; 
( c )  R, = 2.6, E-2 = 6200; ( d )  R, = 1.8, E-2 = 
1 . 1 0 ~  104; (6) R,  = 0.44, ~ - 2  = 3.47 x iv. 

FIGURE 6. Typical photographs of vertically 
inducrd dye streaks. Casos (a)-(c) correspond to 
figiires 4 ( a ) ,  4(d) a n d  4(e )  respoctively. 

Plate 2 

FIGURE 5. For legend see above. 
HAR,T 


